
Architectural Patterns that limit
Application Scalability

(c) Copyright 2007. Oracle Corporation

Client + Server Pattern

Server is point of contention

Contention increases Server
response time = increased Client
latencies

Client scale-out increases contention

Not just Database related. Consider
Store-and-Forward messaging
systems.

The server may be a “switch”

Lesson: Avoid Single Points of
Contention / Bottleneck (SPOB)

(c) Copyright 2007. Oracle Corporation

Master + Worker Pattern

Master is point of contention

Contention increases Master
response time = increases Worker
(and requestor) Latencies

Scale-out increases contention

Lesson: Avoid Single Points of
Contention / Bottleneck (SPOB)

(c) Copyright 2007. Oracle Corporation

Master + Worker Pattern
Continued...

Typically Master + Worker actually is
also Client + Server!

Often the driving requirement for
“Data Grid” in a “Compute Grid”

Lesson: Avoid patterns with
multiple SPOB!

(c) Copyright 2007. Oracle Corporation

Failure and Recovery (as
forms of latency)

System Failure and Recovery
introduce latency

Micro Outages (garbage collection,
memory management, process
management, paging, swapping etc)
introduce unexpected latencies

Single Points of Failure may magnify
latency effects across a system

Lesson: Avoid Single Points of
Failure (SPOF)

(c) Copyright 2007. Oracle Corporation

Increasing Resilience

Increasing resilience increases
latency

Synchronously maintained resilience
typically doubles latencies

Asynchronously maintained resilience
will always introduce data integrity
issues

Lesson: Resilience rarely has zero-
latency properties

Lesson: Resilience ≠ Persistence

(c) Copyright 2007. Oracle Corporation

Partition for Parallelism

Partition Data onto separate Masters
to provide load-balancing and
increase parallelism

Not always easy, especially if access
patterns are dynamic and load is
uneven

“Joins” become very difficult, but
queries work in parallel

Lesson: Hot spots are inevitable
Lesson: Slowest Responders!
Lesson: Partition failure may
corrupt state. RAID is a better
partitioning strategy

Lesson: Don’t use a “registry” to
locate data (Masters)

(c) Copyright 2007. Oracle Corporation

Common traits...

• Each pattern...
• Focuses on moving data to servers / compute
• Has points of contention and failure

• Why do we move terabytes of data across networks
to only a few megabytes of code?
• This is extremely inefficient
• This limits scalability and performance

• Think about “mineral mining”
• Do they move all of the earth to the city to be processed?

(c) Copyright 2007. Oracle Corporation

A solution: Introduce
Caching?

Keep local copies of information to
avoid I/O latency.

May offer magnitudes of performance
improvement

Lesson: Cache Consistency and
Coherency is a challenge as you
scale out.

Don’t underestimate the effort
required to achieve this.

Lesson: “Grid Cache” doesn’t
mean massive performance
improvements – most technologies
are implemented using a “faulty”
architectural pattern (like ones
mentioned previously)

(c) Copyright 2007. Oracle Corporation

Summary of Lessons
• Avoid Single Points of Contention
• Avoid Single Points of Failure
• Avoid Client + Server
• Avoid Master + Worker
• Active + Active better than Active

+ Passive
• Ensure fair utilization of resources

• Resilience increases latency
• Resilience ≠ Persistence
• Resilience = Redundancy
• RAID is a good pattern
• XML is not great
• Interoperability is best achieved at

the binary level (hardest, but best)

• Avoid moving data
• Exploit Data Affinity

• Data + Data and Data + Compute

• Deploy code everywhere
• It’s smaller
• Dynamic code deployment is

dangerous in transactional systems

• Exploit Parallelism
• Partition Data for Parallelism
• Hot Spots are unavoidable

• Pipeline architectures help significantly

• Use Caching to reduce I/O
• Cache Coherency is not free
• Cache Coherency is essential for

Data Integrity
• Understand the underlying

implementation of solutions!

(c) Copyright 2007. Oracle Corporation

Achieving Unlimited Scalability and
High Performance means...

1. Doing something completely different
architecturally

2. Avoiding patterns that limit scalability or performance

3. Ensuring each vendor supplied architectural
component avoids limiting patterns

(c) Copyright 2007. Oracle Corporation

	Architectural Patterns that limit Application Scalability
	Client + Server Pattern�
	Master + Worker Pattern�
	Master + Worker Pattern�Continued...
	Failure and Recovery (as forms of latency)
	Increasing Resilience�
	Partition for Parallelism�
	Common traits...
	A solution: Introduce Caching?
	Summary of Lessons
	Achieving Unlimited Scalability and High Performance means...

